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ABSTRACT

Solutions are presented for subtracted dispersion relations, written
for the s and p-wave inverse mwrm scattering amplitudes with (CDD) poles
inserted into both s-waves. These solutions predict the existence of a
super broad I = 0 s-wave resonance (o) accompanied by a small, negative
I = 2 phase shift, in the absence of any s-wave experimental input
whatsoever. While p-wave subtraction parameters are adjusted to fit
a 755 MeV p resonance with width 120 MeV, the s-wave parameters are
determined by crossing symmetry through derivative conditions to third
order. The coupling constant, A, is a free parameter, and resonant
solutions are obtained for -.033 < X < .040 with o masses ranging from
550 to 900 MeV. 1In no case does 62 rise to 135° by 1 BeV. On the basis
of a sum rule, solutions with A > .007 are preferred. The data from
which two experimental analyses predicted the scattering length ratio
ao/a2 = -3 are compared to predictions based on the solutions. Agreement
is obtained for solutions with .007 < XA < ,03 with -2 < ao/a2 < 0.

The "best" solution,with A = .020, predicts a o of 750 MeV and an I = 2
s-wave phase shift of -18° at the p mass. 1Its scattering lengths are

= -,088 and UBa = ,032, and 60—6 = 53° at 500 MeV,

wa, = 040, na 1 2

2



I. INTRODUCTION

Lovelace's analysis of backward mp scattering data using dispersion
relations@l provided one of the earliest indications of the existence
of an s-wave I = 0 mm resonance, the o. Consequently, it has been
something of a disappointment that dispersion relation calculations of
mn  scattering, incorporating the restrictive conditions of unitarity
and crossing symmetry, have until now failed to predict the ¢ without
the input of additional s-wave information. Nevertheless Morgan and
Shawg2 assuming the existence of a ¢, have calculated a range of s-wave
scattering lengths which includes those predicted by Weinberg from PCAC
considerations@3 Also, Tryon4 has produced a o in calculations using
Weinberg's scattering lengths aé input. This present paper, however,
reports a series of calculations of subtracted dispersion relatioms,
written for the 7n inverse partial wave amplitudes, which culminates
in the prediction of a broad ¢ resonance, a small negative I = 2 phase
shift, and s-wave scattering lengths in good agreement with earlier
predictions, in the absence of any s-wave input whatsoever.

The solutions reported herein are ordered by the Chew-Mandelstam
coupling constant ), which is a free parameter in the calculations. The
mass of the predicted ¢ resomnance increases with ), from 550 MeV for
A = -.033 to 900 MeV for A = .040, as does its width. Further weakening
of the s-~wave I = 0 attraction with increasing X is evidenced by a
transition solution (62 small and negative below 700 MeV, small and
positive above) for A = .100 which links the resonant solutions to the

repulsive s-wave dominant solutions previously reported for large

o
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positive X.5_7 While solutions could not be obtained for A < -.033,

projecting an increasing attraction with decreasing A indicates the
probable establishment of a bound state for larger negative A. This
bound state has already been reported in results which failed to exhibit

resonant behavior.697

Thus, in addition to‘predicting the existence of

a o resonance, these solutions provide an understanding of the interaction
as a function of X which explains earlier results whose interpretation was
previously unclear.

The innovations which lead to the striking success of these calcula-
tions are the insertion of (CDD) pole terms into the dispersion relations
for both of the s-wave inverse amplitudes, and the evaluation of parameters
using derivative conditions to third order from crossing symmetry. The
insertion of the pole terms allows the possibility of zeros in both s-~wave
partial wave amplitudes. While such zeros have been predicted from PCAC

3

considerations, no conditions from current algebra are imposed in the

calculations. In fact, since crossing symmetry requires the first
derivatives of the s-wave inverse amplitudes to be proportional to A_z
[Eqs. (19), (20)], it is obvious that for small ‘K[ this condition cannot
be satisfied by dispersion integrals unless further structure is built in.
Thus, even the motivation for the introduction of the pole terms is
contained within this formalism. Nevertheless, for the resonant solutions
the positions of the zeros of the I = 0 and 2 s~wave amplitudes, plotted

one against the other, lie on a straight line passing through the point

predicted by PCAC.
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The single third derivative equation used here was derived and used
in a previous paper by the author,,9 henceforth referred to as I. It was
then impossible to ascertain the usefulness of this equation because in
I it was only possible to obtain solutions for Ix{ > .1 (which differed
little from earlier non-resonant, s-wave dominant solutions). Since this
equation was of unknown utility, and is also difficult to apply, initially
it was not used to evaluate parameters in the calculations reported here.
However, it was found to provide an unambiguous choice among resonant
solutions produced when the I = 2 s-wave phase shift was fixed at experi-
mental values. Its subsequent imposition in determining parametgrs during
iteration was the crucial step &n obtaining the clear understanding of

the interaction as a function of XA which has already been described.



II. FORMALISM

In terms of the variable v = s/4 - 1, where s is the center of mass
energy squared (natural units, m o= 1), the unitarity condition for

elastic scattering is
AT = [ P eor ol-n)7 1

where v > 0 and the phase shifts, GI

v are real. This relation is assumed

valid within the energy range of these calculations. The once subtracted
1

dispersion relations for the s-wave inverse amplitudes FI(v) = Ag(v)_ .

with pole terms inserted, are
Flag,2 () = op #BL/(vp) + ) + 1) -1 S0 (@)

and the twice subtracted p-wave dispersion relation, written for Fl(v) =

vAi(v)~1 is
FL(v) = ag + BV +vE(W) + L (V) - 1v :?l(v) ) (3)

(Fl(v) lacks the threshold singularity of Ai(v)_le) The integral over the

right hand cut discontinuity (given by unitarity) is

0

v o'/ 141y
m

f£(v) = =) dv’
0
2 1/2 i
- 2 ot wmflvsl+fiv D)
for v.> 0 or v < -1
2, -v1/2 -1 ,1+v.1/2
=7 @)t )
for -1 < v <0 . (4)
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The integral over the left hand cut discontinuity is

okl -1 Im Ai(v')dv‘
L(v) = ->—p J — (5
_ v*(v'—v)[AZ(v’)l
and the imaginary parts of the inverse amplitudes are
I
Im A”(v)
1
Zgl(v) = C;ﬁii /2 o(v) + —~Ef£L—§-e(—v—l) . (6)
A, |

Using approximate crossing symmetry, the left hand cut discontinuity is

expressed in terms of the right hand cut discontinuity in the crossed

channels;
=v=-1
I _ 2 ' v+l
Im Al(v) = 3 f dv P% 1+ 2 n )
0
¥ v+l I T
x %7 XI7t §v<2a P (L +2=PIm A () 5 (D

where y is the usual crossing matrix

» (8)

and the partial wave expansion is truncated after p-waves. On the right
hand cut Im Ai(v) may be written using the unitarity condition as soon
as Re[Ai(v)-lj is known. Hence iteration proceeds by neglecting LI(v)
and evaluating parameters, then computing LI(v)g recomputing parameters,
etc., until all parameters change by less than one per cent in the last

iterative loop.
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The eight parameters introduced by pole terms and subtractions are
evaluated by a combination of conditions from crossing symmetry and
experiment. The p-wave subtraction constants are fixed by the mass and

width of the p resonance by requiring

3
v',.1/2 1 _
G corbyly 7O ©)
and
3 v3
d v>.1/2 1 _ 1., p \1/2
dv [(v+l) COt61 vp B Y (vp+l (10

with vp = 6,25 and vy = 1.15, corresponding to a resonance of mass 755 MeV
and width 120 MeV. Thus, at the p resonance the p wave has the same slope

as if it were given by the Breit-Wigner form

1 v+1,.1/2 Y

MO = G (11)

v

Crossing symmetry, applied at the symmetry point of the Mandelstam
triangle, provides derivative conditions which may be used to evaluate
parameters. Although an infinite number of conditions are available,
higher partial waves become more important in higher derivative conditions.
Consequently, in the following derivative conditions (Egs. (21), (22a),
(22b), (26) and (28) of 1), d-waves have been removed from the second
derivative condition, and both d and f-waves have been removed from
the third derivative condition; by parameterizing them near threshold

and combining equations:

20 = 5A§ y (12)



an) an’
R (13)
- 94, (14)
i) o a%al L aa7
- = 27AT + 18 —— (15)
de 2 d\)2 1 dv
3.0 3,2
) l.(d AO ) §_d AO)
3 dv3 2 dv3
dal a%al
_ 675 A1 4225 1 + 75 1 (16)
8 "1 4 dv 4 2 -
dv
These conditions are to be evaluated at the symmetry point vsp = —-% , and

it is to be recalled that Ag(vsp) = =5X. Thus, with A specified a priori
as a free parameter, the six s-wave parameters may be evaluated without
using conditions based upon experimental results.

Before discussing the application of these conditions it is perhaps
in order to comment upon their usefulness. In Ref. 4, Tryon comments
that when d-waves are kept, the solutions of partial wave dispersion rela-
tions satisfy second and all higher derivative conditions identically:
thus they are not useful to him in determining parameters. Within the
formalism used here, unless the pole term parameters are chosen to satisfy
a given condition there is clearly no reason to expect it to be satisfied.
Thus the usefulness of a condition must be determined by whether or not
it provides a means of discriminating between possible choices of a
parameter, or solution. The usefulness of the third derivative equation
[Eq. (16)] was seriously questioned when early calculations showed it

to be well satisfied over a wide range of A by solutions obtained when
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68 was required to resonate at 745 MeV. However, when the resonance

condition was replaced by one fixing 63 there, Eq. (16) provided an
unambiguous means of discriminating between the solutions. With its
utility thus established it was then successfully used to replace the
condition from experiment in determining parameters.

Although it may not be immediately obvious, the application of the
derivative equations to determine parameters is straightforward.A First

the conditions are expressed in terms of the inverse functions F With

IQ
A specified a priori, the zeroth and first order equations provide four

conditions, each linear in only one of the s-wave functions F 2 (recall
?

0

that the p-wave is completely known from the p mass and width):

A o= -(5Ep (17)
= -y (18)
dF
0 _ 2 -1
5, = "6(25A°F) (19)
dF
2 2 -1
= - 3(4x Fl) (20)

While differentiation of the numerically evaluated left cut integrals is
difficult after integration, Eq. (5) may be differentiated any number of
times prior to the integration. Since the resulting integrals converge
even more rapidly, no accuracy is lost by this procedure.

The second and third derivative conditions are slightly more complicated
to apply because they involve both s-waves. Nevertheless, when a condition

from experiment is applied to either one of the s-waves, that condition plus
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two of the above conditions allow the evaluation of the three parameters
of that partial wave via linear equations. With one s-wave known, the
second derivative condition (incorporating Eqs. (17)-(20)),

a2F a2F dF

2_ "2 _ _ -2 1 81
- 5 = (SXFl) (12

I " 1o

(21)

may be linearly combined with the other two equations above, specifying
all parameters unambiguously. The third derivative equation (expressed

incorporating Eqs. (17)-(20)),

3 3 2 -3
Ty L&, o a’r , &%é) 7 96
3 5 53 S I 12~ G

2

_ a’F dF

22 19F 1 1.2

307D 2 1G — - - 5% (22)

dv 1

may then be evaluated straightforwardly.

When Eq. (22) is used in solving for parameters, a quadratic equation
results for the ratio YI/BI for one of the s-~waves. Consequently, two
sets of parameters are produced. In general, initially choosing the set
with do < 0, then minimizing the change in Yo resulted in solutions,
while the opposite initial choice led to imaginary roots. However, for
A < =.008 the initial roots were imaginary. This difficulty was overcome
by assuming initial values for the LI(V) and their derivatives at the
symmetry point taken from solutions obtained for the same A values when
the resonance was required. Even this technique failed for A < -.033,

when after a few iterations the roots became imaginary.



III. RESULTS

Calculations were carried out for three cases. In the first, 68

required to resonate at 745 MeV; in the second, Gg was fixed within its

was

experimentally determined range near the p mass; in the third case the
third derivative condition was imposed. In all cases ) was fixed a priori
as a free parameter, and solutions were obtained over as wide a range of

A as possible. Crossing conditions through the second derivative were

enforced in all cases.

A, RESONANCE REQUIRED

The s~-wave phase shifts of typical solutions obtained when a o of
745 MeV10 was required are shown in Fig. 1, and the related scattering
lengths in Fig. 2. For -.05 < X < .05, the scattering lengths agree
within 57 with those computed by Morgan and Shaw2 for a o of 765 MeV.
Thus, the general agreement found between their phase shifts and those
of Fig. 1 is expected. Since the solutions presented here cover a wider
range of A, it is to be expected that as A increases to .100 the sign
change of 68 occurs at higher energy, and that as A decreases to-.080,
68 increases more rapidly near threshold, than occurred in their limiting
cases. Although they published no turnover 62

0

that they obtained them, since they obtained positive I = 2 scattering

solutions, it may be assumed

lengths for A < =.03. A notable difference, however, is seen when the
68 curves of Fig, 1 are compared with those of Morgan and Shaw near the
o resonance. Their solutions, obtained by treating the width of the ¢
as an input parameter, exhibit a wide range of widths, while the formalism

used here predicts only very broad, asymmetric resonances. Their weaker

-12-
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conclusion that solutions with broad o's are preferable is an indication
of the greater power of the method used here.

Since all resonant solutions reported in this paper are very broad,
it should be emphasized that this is a conmsequence of the crossing condi-
tions employed, and cannot be attributed to inflexibility of the s-wave
parametrization. To see this, note that as v increases above the position
of the pole of Fg (lying either above or below threshold), Fg(v) decreases
from +~ to zero at the resonance. A continued decrease to -1, clearly
allowed by the form of the parametrization, would correspond to 68
increasing to 135°. The absence of such an increase must therefore be
attributed to the conditions used to fix the parameters, i.e. crossing
symmetry.

The most surprising results of the calculations performed with the
o resonance required are shown in Fig. 3, where the right and left hand
sides of Eq. (16), the third derivative equation, are plotted. This
equation is seen to be surprisingly well satisfied over almost the entire
range of A shown, and clearly cannot be used to choose any one solution
as best. When this was discovered, it was assumed that it was somehow
due to the satisfaction of the lower derivative crossing conditions, and
that the third derivative condition was therefore empty. It certainly
seemed unlikely that the imposition of this condition would prove to be
the critical step in obtaining resonant solutions over a wide range of

A (see section C).
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With the loss of the third derivative condition as a means of dis-
criminating between solutions, the possibility of firmly predicting the
existence of a ¢ in this case vanished. Nevertheless, the progression of

63 with A indicated the possibility of a 68 progression if 62 was con-

0

strained. This provided the motivation for the next set of calculatioms.

B. Gg FIXED NEAR THE o

Figs. 4-7 show the s-wave phase shifts of typical solutions obtained

when the value of 63 at 745 MeV]'O was fixed in its experimentally deter-

mined range. The reproducibility of results within this formalism may
be seen as follows: from Fig. 1, a o near the p mass is predicted for
X 22 .04 when Gg = ~-20°: it is seen in Fig. 4 for » = -.038. A similar

¢ may be expected for A %2 0 when 6% = -15°, and is seen in Fig. 5 for

A =-=,002. The incompatibility, seen in Fig. 1, of a 0 near the p mass

and Gg -10° is evident in the lack of such a solution in Fig. 6. Finally,

for 63 -20° a o near the p mass is predicted for A& -.06 from Fig. 1.
Although such a result was not obtained, a solution for A = -.057, resonant
at 1 BeV, is seen in Fig. 7. Thus the formalism is satisfactorily self-
consistent.

The most obvious feature of Figs. 4—-6, the decrease of the mass and
width of the ¢ with increasing A, turns out to be a misleading consequence
of the constraint of 6%; The decrease would seem to imply an attractive
interaction, increasing in strength with A. However, the solution for

A = .057 of Fig, 5 shows that instead of a bound state being formed for

large A (i.e. the resonance approaching, then going below threshold with
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increasing 1) the interaction becomes repulsive. (Since intermediate
solutions of this type most often failed to converge upon iteration, this
conclusion was first reached by noting that the scattering lengths of
Fig. 8 did not exhibit the discontinuity which would have corresponded

to the establishment of a bound state.) The pertinant feature of these
solutions is instead, the advance with increasing A, of the pole of Fg
(zero 68) toward v = «» and its reappearance of large negative'values of v.

The true increase of attraction occurs with negative A, culminating
in the formation of the bound state seen in Fig. 7 for A = -.67. However,
only extremely heavy, broad o's are produced here, with the lightest
_occurring at 1 BeV for A = ~.057. The close similarity of the solutions
with A < —=.13 to the negative A solutions obtained in I is probably due
to the constraint of the I = 2 s-wave imposed in I by the insertion of
a pole term into only the I = 0 s-wave,

In Fig. 8 the s-wave scattering lengths are plotted one against the
other. The curves are from Morgan and Shaw, with the upper, middle and
lower curves representing ¢'s of 900, 765 and 600 MeV respectively. The
curve of Fig. 2, drawn for a o of 745 MeV, would lie just slightly below
the middle curve, as is expected. The progression of the points across
the curves as the o is established and moves toward threshold is in
accordance with the ordering of the curves.

Order was introduced into this confusing welter of solutions by the
resurrection of the third derivative condition. Eq. (16), applied to the

various solutions, is shown in Fig. 9. It clearly selects a single solution
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from each set computed for a given Sg value. For Gg values of -10°, -15°
and -20° the preferred solutions have A values of -.017, .007 and .038,
and exhibit o resonances with masses of 600, 660, and 750 MeV. Thus,
with increasing A the o moves away from threshold, indicating a weakening
attraction. The connection of these selected solutions with the repulsive
solutions found in I for large positive A is seen by the omset of repulsion
indicated by the emergence of the pole of Fg(v) (zero of 68) above threshold
in the solution for 6% = -20 with A = .038.

Thus, the third derivative condition proved to be the condition which
forces the existence of a o resonance over a wide range of A. Further,
the interpretation of the solutions satisfying it is consistent with the
previously existing information about the interaction as a function of A.

With its usefulness thus proven, the logical next step was to use it to

obtain solutions completely devoid of s-wave input from experiment.

C. THIRD DERIVATIVE CONDITION IMPOSED

The s-wave phase shifts for typical solutions obtained when all s-wave
parameters were fixed solely by conditions from crossing symmetry are
shown in Fig. 10. The attraction causing the resonant Gg‘s clearly weakens
with increasing A, and the solution with A = .100 indicates the transition
to the repulsive solutions previously obtained for A > .l. The scattering
lengths for these solutions agree closely with those computed when the
resonance was required, and are plotted in Fig. 1ll. Imaginary roots
obtained in solving for parameters prevented solutioms with A < -.033 or

A > L1,
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The asymmetry of the 68

above 135° by 1 BeV, makes it difficult, if not meaningless, to assign

curves plus the fact that none of them rise

widths to the o¢'s indicated by the various curves. A common approximation
is to quote the width of a Breit-Wigner resonance, the real part of whose
inverse amplitude at the resonance position has the same slope (as in
Eqs. (9)-(11)). For the solutions with A = -.033, .007 and .040, above
the resonance the square of such an amplitude falls to half of its maximum
value at 710, 1050 and 2350 MeV. However, the corresponding point below
the resonance lies below threshold for all solutions except that for
A = -.033, for which it lies at 310 MeV,

The locations of the zeros of the s-wave amplitudes are plotted one
against the other in Fig. 12. For the resonant solutions, they lie on
a straight line passing through the point predicted from PCAC considerations,
which coincideswith the solution with A = -.008. Since the resonant solu-
tions obtained for the other cases exhibited zeros lying on this same line,
it was felt that this must be due to some invariant feature of the formula-
tion. The most obvious possibility was a combination of the lowest order

crossing conditions. Parametrizing the s-waves by

I
Aj(V) = ap +bpyv o, (23)

and applying only Eqs. (12) and (13) yielded the prediction

vy = —,8v0 - 1.2 (24)

for comparison with the line of Fig. 12,
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v, = .740vy - 1.17 . (25)

Since the amplitudes are not linear, this is quite satisfactory agreement.
The difference in slopes is mainly due to a systematic decrease, with
increasing A, of the second derivative of Ag at the symmetry point.

In achieving the above prediction, it was seen that with only the
additional imposition of condition (14) the scattering lengths would be

related by

1
2a0--5a2 = lS/Fl(sp) (26)

(still assuming linear s-waves). The Breit-Wigner p used to fix the p-wave
in Eqs. (9) and (10) corresponds to Fi(sp) = 31.9, so the scattering lengths

would lie on the line
a, = .4a0 - .113 . 27

Now in the actual calculations, the p-wave differs from a B~W resonance

due to the cut integrals. Examination of the solutions shows that Fi(sp)
increases with A, and agrees with the B-W value for X 337C)(Table I). For
each solution it is straightforward to predict a line similar to Eq. (27),
and (using the value of A also) the point on the line expected if the s-wave
amplitudes were linear. These predictions are shown in Fig. 11. From the
surprising accuracy of these crude predictions it is clear that the
scattering length curve is determined primarily by the lowest order crossing

conditions and the p~wave at the symmetry point.



IV. PREFERRED SOLUTIONS

All of the resonant solutions of Fig. 10 are acceptable in the sense
that their phase shifts near the p resonance lie_within the range of
values reported experimentally. Nevertheless, they differ significantly
near threshold, with extreme solutions exhibiting a “turnover" phase
shift in one or the other of the isospin states. Although phase shift
analyses based on the scattering of charged picns are unreliable at low
energies, and multi-valued as well, other experimental evidence exists
which may be used to select a preferred solution on the basis of its low
energy behavior. However, since so much has been achieved without recourse
to experimental results, it is of interest first to see if theory can
predict a "best" solution for comparison with the results of experiment.

Olssonll has recently nqted that the shape of the scattering length
curve may be qualitatively predicted, assuming a ¢ exists, Ey the use of
the sum rule

2a -5a, = 6L (28)

where

STA S AT - AT] . (29)

With the shape of the curve understood, however, it seems more pertinent
to use this relation as a consistency check, asking whether or not the
line predicted by Eq. (28) for a given solution passes through the point
on the scattering length curve corresponding to that solution. Unfor-
tunately, the convergence of the integral is slow, so that contributions
from above 1 BeV are significant. The onset of inelasticity makes the

amplitudes computed here unreliable above 1 BeV; fortunately, contributions

-19-
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from the two s-waves and the p-wave almost cancelled in this region.
Additional high energy contributions to L have been estimated by Tryon4
as follows: from the f0(1250), .007: from the g(1650), .002; net
"daughters" contribution from lower spin resonances beneath the f0 and
the g, .OiO; "Regge" contribution due to p exchange above 1.8 BeV, .013.
Adding these contributions (totalling .032) to the contributions of the

I =0 and 2 s~waves and the p-wave (summed to 1.1 BeV) yields

A = =-.033:

L = .090 - .003 + .037 + .032 = ,156
A= .007:

L = .057 - .008 + .037 + .032 = .118 (30)
A= .040:

L = .032 - .020 + .037 + .032 = .081

to which is appended Tryon's error estimate of + .015 due to contributions
from above 1 BeV.

In Fig. 13 the scattering length curve is re-~drawn for comparison with
the lines predicted by Eq. (28). Solutions with larger A values and higher
mass o's are clearly more self-consistent than those with smaller A values
and lower mass o's. The solution with A = .040, whose point lies close to
the .040 line, is very self-consistent, whereas the solution with A = .007,
whose point lies slightly outside the error bars for the .007 line, is
consistent with one standard deviation from the prediction. Consequently,

solutions with A > .007 are preferred.



V. COMPARISON WITH EXPERIMENT

We now turn to the results of experiment. The analysis by Deinet

2

1 . - 0_o . .
et al.”™™ of the reaction m p + 7 m n provides the best recent evidence

for the existence of a o. They find a cross section for ﬂ+ﬂ_ - “oﬁo
scattering consistent with the saturation of unitarity from 600 to 900 MeV.
Their results are shown in Fig. 14 along with the cross section curves
calculated from the solutions of Fig. 10. While the solution with A =
-.033 peaks and then falls at too low an energy, the rest of the solutions
are consistent with the data. Thus the great widths of the predicted

o's are in agreement with experimental results above the mass of the p.

13,14

Two recent theoretical/experimental analyses have predicted/

deduced that the ratio of the s-wave scattering lengths is ao/a -3,

5 =
which would correspond to a solution with A 220 in Fig. 13. However,
when the predictions of the solutions of Fig. 10 are compared with the
data, agreement is obtained in the range .007 < A < ,03, with -2 < aO/a2 <
0. This discrepancy is, of course, due to the approximations used in
obtaining predictions from the data.

In the analysis of Cline, Braun and Scherer13 the ratios of
0(ﬂ+ﬂ- - ﬂoﬂo) to O(ﬂ+ﬂ— > w+n_) and o(ﬂ+w+ > n+ﬁ+) are shown to depend
simply on r = sin Sg/sinéé QZfdg/Gg near threshold. These ratios are
averaged between 300 and 400 MeV (despite a fourfold variation in the
former) and used to predict an average value for r which is assumed to
equal aO/aZ° In Figs. 15 and 16 the cross section ratios from their

paper are shown along with the predictions of the solutions of Fig. 10.

In both cases the low energy results are bracketed by the solutions with

-21 -
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A = ,020 and .007, with the former solution preferred by the 00/4- ratio
and the latter by the 00/4+ ratio.

In the anaiysis of Gutay, Meiere and Scharenguivel,14 the helicity
amplitudes for the reaction 'rrup -> 1r+1r_n are assumed to contain the factors
Tz—(s,Az), which are the off mass shell ﬂ+ﬁ~ partial wave scattering
amplitudes, with —A2 the mass of the off-shell pion. T;- is expressed
in terms of linear, crossing-symmetric I = 0 and 2 s-wave amplitudes,
constructed to satisfy the Adler consistency condition. (So comstructed
‘each amplitude is a function of the same two parameters, B and C, and the
variables s and Azg) Requiring Tgw to vanish yields a linear relation
between A2 and s (in terms of B and C) whose slope may be used to evaluate
the ratio of the parameters, and consequently the ratio aolaz. This slope
is then evaluated from a plot of Az vs s for the zeros of the asymmetry of
the w7 angular distribution (which occur when Tg_ vanishes.) The obvious
approximation to question here is the assumption of linear amplitudes above
threshold.

Since the amplitudes for the solutions of Fig. 10 are not linear, a
reasonable way of comparing them to the data is to fit a straight limne to

their values at the symmetry point, and at 400 MeV (fit to Re Aé above

threshold). For this procedure the amplitudes are written

0 _ 2_ a2
T0 = -2 Bo(s+2A 1) + CO(ZS AT=2)
2 _ T 2_
T0 = -Bz(s AT=1) Cz(s-%-A 1 (31)

which, with B0 = B2 and CO = ng agrees with Eq. (4) of Ref, 14 after
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imposition of the Adler condition. The fourth pion is then put on the
mass shell (A2 = -1), and the B's and C's evaluated by fitting to the

symmetry point and 400 MeV values of the solution in question. (With B0

= B2 and C0 = C2 these amplitudes satisfy crossing Eqs. (12) and (13) on the mass

shell. Since the symmetry point value is used in the fitting procedure,

Eq. (12) remains satisfied, but Eq. (13) is forfeited to achieve the fit.)

-P_.=

1 0,..2, _ . .
0 g-(ZTd+TO) = (0 yields the relation

Imposing the condition T

2 VBZ—4B0+4CO_C

AT = ) (s-1)
8B, +2C+B,*C,

(32)

which has slope (C-B)/(3B+C) wﬁen the B's and C's are equal. In Fig. 17
the slopes computed for Eq. (32) are plotted against the A values for the
solutions to which the B's and C's were fitted. For comparison, the slopes
computed by linearly extrapolating the crossing symmetric amplitudes
(equal B's and C's, evaluated using Eq. (14) and the relatiomn of X to Ag(sp))
are also shown.

Since the s intercept of Eq. (32) is known, one experimental point is
sufficient to compute the slope. The 300-400 MeV point of Ref. 14 was
used to compute the "experimental" value for Fig. 17, rather than a fit
to points up to 600 MeV. (If the points to 600 MeV were used, the center
of the "experimental”™ band would be raised from 1.02 to 1.3.) This was
done because for all resonant solutions Re Ag (which increases above

threshold) peaks between 400 and 510 MeV, then decreases to zero at the

resonance position.
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Under linear extrapolation of symmetry point magnitudes and slopes,
the solution with A = -.008 agrees with experiment. The ratio of the
scattering lengths predicted by this linear éxtrapolation is -3.5. (Linear
extrapolation for a solution with A = -.006, which agrees with the
experimental slope of 1.3 quoted in Ref. 14, yields a ratio of -3.1 in
close agreement with their result of -3.2.) However, for the solution
(not the extrapolation) with A = —-.008, aO/a2 = -6.4, Clearly this ratio
is extremely sensitive to the non-linearity of the solutions. The
‘mecessity of incorporating the non-linearity of the solutions when extrapo-—
1éting them above threshold for comparison with experiment is obvious.

When linear amplitudes are fitted to the solutions and extrapolated
as described, agreement with experiment is obtained for the solution with
A = .03, for which aO/a2 43509 Thus, once again agreement with experiment
is obtained for a solution in the range of A preferred on the basis of

self-consistency under the sum rule test of Section IV,

A final experimental test is provided by the value of [68—6%[ at
500 MeV, deduced from the charged-to-neutral decay ratio of the Kg.

-]
Kalmus15 quotes a value of 40 t ég based on the work of the Rochester

group,16 As is seen in Table I, solutions with A > .020 pass this test.
Thus agreement with experiment is obtained for solutions in the range
.007 < A < .03, which lies within the range preferred by the sum rule test
of Section IV, With this impressive agreement as encouragement, the
solution with X = .020 is selected as the "best" solution. This selection

is not made simply because .02 is central to the experimentally preferred
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values, but rather on the basis of the low energy behavior of the
experimental points of Fig. 15. The low energy peaking of the cross
section ratio plotted there provides a test which is insensitive to
normalization errors, and is consequently much more convincing than that

of Fig. 16. It is also more convincing than the long off-mass-shell

extrapolation (from A2 -1 to +6) of the linear fitted amplitudes leading

to the prediction of X = -.03. It is extremely satisfying to be able to
thus select a single solution, within the range preferred by theory, as

best.



VI. SUMMARY AND CONCLUSION

It has thus been possible to produce a "best" solution to the coupled
s and p-wave inverse amplitude dispersion relations for 7T scattering
which is in agreement with all known features of the 7 interaction at low
energies. This solution was selected from a range of solutions obtained
using as input only the physical mass and width of the p resonance, plus
the restrictive conditions of analyticity, elastic unitarity and crossing
symmetry.

In order to obtain the resonant I = 0 s-wave solutions of interest
it was necessary to insert (CDD) pole terms into both s-wave dispersion
relations, thus allowing zeros of the amplitude between the cuts.

However, it was seen that the motivation for the insertion of such poles
was contained within the formalism itself, and no predictions from other
formalisms were used in obtaining the solutions.

Subtraction constants and pole-term parameters for the s-waves were
chosen to satisfy approximate crossing symmetry in the form of derivative
conditions to third order. The importance of the third derivative condi-
tion in achieving resonant I = 0 s-waves was demonstrated by a series of
calculations showing that it was well satisfied for a wide range of solu-
tions obtained when such a resonance was imposed, and that it allowed
an unambiguous choice to be made among various resonant solutions produced
when the I = 2 s~wave was constrained to experimental values.

Scattering lengths were obtained in good agreement with the "universal
curve" previously obtained elsewhere, and the general features of this

curve were found to be explainable in terms of linear extrapolations of

-26-
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symmetry point values of magnitudes and slopes of the s-wave amplitudes
obtained from the lowest order crossing conditions. Nevertheless, the
deviations of these amplitudes from linearity was seen to affect drastically
the s—wave scattering length ratio ao/az, necessitating careful investiga-
tion of recent analyses deducing experimental values for this ratio. The
"best'" solution was chosen as the result of these investigations, and
belonged to the range of solutions preferred on the basis of é sum rule.
Thus theory provides a self-consistent picture of the low energy mm

~ interaction which is able to accommodate all aspects of the experimental

knowledge of this subject.
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TABLE I

Scattering lengths and symmetry point values for the p-wave, and
s-wave phase shift differences at 500 MeV for the resonant solutions

whose phase shifts are shown in Fig. 10 (method C).

z wa F, (sp) |60-62]
. 040 .0312 35.6 44°
.020 .0320 33.8 53
.007 .0327 32.6 63
-.008 .0333 31.4 70
~.020 .0337 30.7 72
-.033 L0342 30.0 77
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FIGURE CAPTIONS

s-wave phase shifts, labeled by A, for typical solutions obtained
when a ¢ of 745 MeV was required {(method A).

s-wave scattering lengths, with A values indicated, obtained when
a o of 745 MeV was required (method A).

Right and left hand sides of Eq. (16) as a function of A for solutions
obtained when a ¢ of 745 MeV was required (method A). The solid
curve is the left (s~wave) side and the dashed curve is the right
(p—wave) side.

Typical s-wave phase shifts for positive A, obtained when 63 = -20°
at 745 MeV was required (method B). The solid curves show 68 and
the dashed curves show Gg. Since the 63 curves interpolate smoothly
between bounding solutions, some have been left out for clarity.
All phase shifts are modulo .

Typical s~wave phase shifts, labeled by A, obtained when sg = -15°
at 745 MeV was required (method B). Solid and dashed curves are

as in Fig. 4.

Typical s-wave phase shifts, labeled by ), obtained when Gg = -10°
at 745 MeV was required (method B). Solid and dashed curves are

as in Fig. 4.

Typical s-wave phase shifts for negative ) obtained when 65 = -20°
at 745 MeV was required (method B). Solid and dashed curves are

as in Fig. 4.

s-wave scattering lengths of the solutions of Figs. 4~7 (method B).

Values of 6% for solutions indicated by circles, triangles and
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squares are -20°, -15° and -10° respectively. The curves are from
Ref. 2, a required o of 900, 765 and 600 MeV yielding the upper,
middle and lower curves respectively.

Right and left hand sides of Eq. (16) as a function of X for
solutions obtained when 63 was fixed at 745 MeV (method B).
Typical s-wave phase shifts, labeled by A, obtained when Eq. (16)
was imposed (method C). A

The s-wave scattering lengths of the solutions of Fig. 10 (method
C) are indicated by crosses, and labeled by A values. Scattering
lengths predicted by a linear extrapolation from the symmetry point
of the s-wave amplitudes of these solutions are indicated by the
vertical marks crossing the appropriately labeled dashed lines.
These latter aspects of the figure are explained in the discussion
after Eq. (27).

Zeros of the s—wave amplitudes of the solutions of Fig. 10 (method
C) labeled by A values. Weinberg's prediction is labeled PCAC

and coincides with the solution for A = -.008. The straight line
is seen to pass through the points.

The s-wave scattering lengths of the solutions of Fig. 10 (method
C) are indicated by crosses, and labeled by ) values. The dashed

lines are the predictions of Eq. (28) when the various solutions

are used in evaluating the sum rule for L. Estimates of contributions

to L from above 1 BeV and of errors are from Ref. 4.
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. . . . + -
Theoretically predicted cross sections for the reaction 7 m - non®

calculated from the solutions of Fig. 10 (method C), plus the
unitarity bound. The experimental points are from Ref. 12,

Ratio of the cross sections for ﬂ+ﬁ— +> 1% and ﬂ+ﬁ_ +mw . The
curves are computed from the solutions of Fig. 10 and labeled by A.
Experimental points, including symbol shapes, are from Ref. 13.
Ratio of the cross sections for w+ﬁ_ > 1°1° and ﬂ+ﬂ+ - ﬂ+%+, The
curves are computed from the solutions of Fig. 10 (method C) and
labeled by A. Experimental points are from Ref. 13,

Slope, as a function of A, of the line relating s and A2 at the
zeros of the asymmetry of mr scattering, when one pion has mass
—-A2° The curves are from the off-mass-shell extrapolations of
the solutions of Fig. 10 (method C). The solid curve represents

the extrapolations of linear amplitudes with magnitudes and slopes

fitted at the symmetry point, and the dashed curve represents the

. extrapolations of linear amplitudes fitted to magnitudes at the

symmetry point and at 400 MeV. The horizontal band represents the
experimental result obtained from a modification of the analysis

of Ref. 14.
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